AASHTOWare BrDR 7.5.1

LRFR Concrete Moment Redistribution Tutorial

Moment Redistribution in Three Span Spread PS Box Beam

LRFR Concrete Moment Redistribution Tutorial

Moment Redistribution in Three Span Spread PS Box Beam

This example illustrates the effects of moment redistribution for Load and Resistance Factor Rating (LRFR) flexure rating of concrete structures (prestressed, post tensioned, and reinforced). The moment redistribution option is available in BrDR 7.5 for the Manual for Bridge Evaluation (MBE) 3rd edition, with 2022 and 2023 specification interim updates.

Details, including flowcharts, about moment redistribution in concrete structures can be found in the AASHTO LRFD/LRFR Superstructure Method of Solution Manual accessible from the Help menu in BrDR (search for Concrete Moment Redistribution).

Topics Covered

- Bridge Model
- Analysis Settings
- Member Alternative Description Control options
- LRFR Rating
- Specification Check Detail
- LRFR Rating with Moment Redistribution
- Specification Check Detail with Moment Redistribution
- Moment Redistribution Report

Bridge Model

This tutorial uses the bridge created from prestressed concrete structure tutorial PS2 with some minor modifications to satisfy moment redistribution requirements and to illustrate the impact of moment redistribution on rating. From the **Bridge Explorer** import the bridge given with the PS2 tutorial by selecting the **Import** option as shown below.

If information is displayed about the version of the imported file being different than the current version of the program, confirm by clicking **Yes** to have the imported file migrated to the current version of the program. In the **Bridge Description** window, which pops up after the bridge is imported, add MR (for Moment Redistribution) to **Bridge ID** and **NBI structure ID** to distinguish this bridge from the PS2 example bridge.

A 3SpanSprdBoxTraining	gBridge				- 🗆 X
Bridge ID: SprdBoxTra	iningBridg <mark>eMR NBI struct</mark>	ure ID (8): 3SpanSprdBoxTra	MR	Template Bridge completely define	Bridge Workspace View Superstructures Culverts Substructures
Description Desc	ription (cont'd) Alternative	s Global reference point	Traffic	Custom agency fields	
Name:	3Span Sprd Box Trn Bridge			Year built:	
Description:	3 span spread PS box beam continuity	bridge made continuous for li	ve load thro	ugh	
Location:				Length:	ft
Facility carried (7):				Route number: -1	
Feat. intersected (6):				Mi. post:	
Default units:	US Customary ~				
Bridge associa	ation 🔽 BrR 🔽 Brt	D BrM		ОК	Apply Cancel

Click **OK** to close the Bridge Description window.

Save the imported bridge to the database using the Save button located on the WORKSPACE ribbon.

The partially expanded **Bridge Workspace** tree is shown below:

Right-click on the **Framing Plan Detail** and select **Schematic** to display the Framing Plan schematic showing a three span girder system with five girders and span lengths of 75.0, 60.0, and 60.0 ft.

Double-click on the **Deck Profile** tree item of the G2 member alternative -48" PS Box, to open the **Deck Profile** window and go to the **Reinforcement** tab. The reinforcement data imported from the PS2 example consists of two sets of top and bottom reinforcement that extend 15 ft in each direction over each interior support as shown here:

ck	Profile															_		
	PS Precast	Box																
ck	concrete	Re	inford	emen	t													
	Materia	al	Sup	port nber	Start distance (ft)	Length (ft)	End distance (ft)	Std bar count	LRFD bar count	Bar size	Distance (in)	Row		Bar spacing (in)				
	Grade 60	\sim	1	\sim	60.00	30.00	90.00	11.00	11.00	6 ~	3.5000	Top of Slab	\sim					
	Grade 60	~	1	\sim	60.00	30.00	90.00	11.00	11.00	5 ~	2.0000	Bottom of Slab	\sim					
	Grade 60	~	2	\sim	45.00	30.00	75.00	11.00	11.00	6 ~	3.5000	Top of Slab	\sim					
	Grade 60	\sim	2	\sim	45.00	30.00	75.00	11.00	11.00	5 ~	2.0000	Bottom of Slab	\sim					
															New Duplic	ate	Delete	

Delete the last two rows and modify start distance, length, and bar counts in the first two rows as shown below:

A De	ck	Profile														-		×
Туре	:[]	PS Precast Box	ĸ															
De	eck	concrete F	Reinford	emen	it													
		Material	Sup	port nber	Start distance (ft)	Length (ft)	End distance (ft)	Std bar count	LRFD bar count	Bar size	Distance (in)	Row		Bar spacing (in)				
3	>	Grade 60 🗸 🗸	1	~	55.00	100.00	155.00	9.00	9.00	6 ~	3.5000	Top of Slab	\sim					
	1	Grade 60 🗸 🗸	1	~	55.00	100.00	155.00	9.00	9.00	5 ~	2.0000	Bottom of Slab	\sim					
								-										
															New Dupl	cate	Delete	
															ОК	Apply	Canc	el

Deleting the last two rows and changing the start distance and length simplifies the reinforcement layout from two separate sets of top and bottom reinforcement over each internal support to one set of top and bottom reinforcement. The modified reinforcement now starts 20 ft before the first internal support in Span 1 and continues to pass over to Span 2 and then 20 ft after the second internal support into Span 3. This change is required to satisfy the moment redistribution requirements for reinforcement extension and termination which will be discussed later in the tutorial. The purpose of reducing bar counts is to decrease the flexure rating factors over interior supports and to examine whether applying moment redistribution helps to offset the reduction.

Analysis Settings

To select rating vehicles and rating levels, open the **Analysis Settings** window by clicking the **Analysis Settings** button on the **Analysis** group of the **DESIGN/RATE** ribbon.

In the **Analysis Settings** window, select **Rating** and **LRFR** as the **Rating Method**. Then assign vehicles from the **Vehicle selection** tree on the left to the rating levels under the **Vehicle summary** tree on the right as shown in the screenshot below. The assignment is done in three steps. First clicking on a rating level, next by clicking on a vehicle,

and then by clicking on the **Add to** button. To assign multiple vehicles to the same level, only the last two steps need to be repeated. Also, double-clicking on a vehicle has the same effect as the last two steps.

Analysis Settings Design review Rating	- C X
Analysis type: Line Girder Lane / Impact loading type: As Requested Vehicles Output Engine Description	Apply preference setting: None
Traffic direction: Both directions ~ Vehicle selection	Refresh Temporary vehicles Advanced Vehicle summary
E→Vehicles →=Standard →=EV2 →=EV3 →H 15-44 →H 20-44 →HL-93 (JS) →HS 15-44 →HS 20 (SI) →HS 20-44 →Lane-Type Legal Load →LRFD Fatigue Truck (JS) →RRL →SU4 →SU5 →SU6 →SU7 →Type 3-3 →Type 352 →Agency →Jser defined →Temporary	Remove from

Click **OK** to apply the settings and close the window.

Member Alternative Description - Control options

Navigate to the **48**" **PS Box Member Alternative** of member **G2**, double click on it (or click the **Open** button from the **WORKSPACE** ribbon) to open its **Member Alternative Description** window.

Navigate to the **Control options** tab where the option to allow moment redistribution is located as shown below.

This option will be toggled to compare ratings without and with moment redistribution. The first analysis will be without moment redistribution so make sure the option is unchecked and click the **OK** button to apply the data and close the window.

LRFR Rating

To perform the rating select the **48**" **PS Box** member alternative in **Bridge Workspace** tree and click the **Analyze** button on the **Analysis** group of the **DESIGN/RATE** ribbon.

After the analysis is complete, click the **Tabular Results** button to display the ratings. Select **Rating Results Summary** as the **Report Type** and **Single rating level per row** as the **Display Format** option to have the ratings arranged as shown below. Notice there are two ratings less than 1.0 and they both happen due to flexure at the first interior support location at 75.00 ft for the STRENGTH-I limit state.

А	Analysis Results - 48" F	PS Box									- [x c
	Print Print											
Rep	ort type:	C Lane/Impact	loading type	Di	splay Format							
Rat	ing Results Summary		uartad Date	silod S	ingle rating lev	el per row	\sim					
	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	
	HL-93 (US)	Truck + Lane	LRFR	Inventory	31.39	0.872	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	HL-93 (US)	Truck + Lane	LRFR	Operating	40.69	1.130	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	HL-93 (US)	90%(Truck Pair + Lane)	LRFR	Inventory	28.50	0.792	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	HL-93 (US)	90%(Truck Pair + Lane)	LRFR	Operating	36.95	1.026	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	HL-93 (US)	Tandem + Lane	LRFR	Inventory	37.78	1.049	37.13	1 - (49.5)	SERVICE-III PS Tensile Stress	As Requested	As Requeste	ed
	HL-93 (US)	Tandem + Lane	LRFR	Operating	49.11	1.364	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	Lane-Type Legal Load	Truck + Lane	LRFR	Legal	3960.00	99.000	0.00	1 - (0.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	NRL	Axle Load	LRFR	Legal	61.57	1.539	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	Type 3	Axle Load	LRFR	Legal	61.25	2.450	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	Type 3-3	Axle Load	LRFR	Legal	79.83	1.996	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	Type 3S2	Axle Load	LRFR	Legal	70.96	1.971	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requeste	ed
	HTO LEEP Engine Versio	on 7.5.1.2001										
AH3	Luis auforenza autore	Nees										
Ana	iysis preference setting:	None										
												Close

Specification Check Detail

The ratings displayed in the **Rating Results Summary** come from the rating specification articles that are processed during analysis. All specification check articles can be reviewed by clicking the **Specification Check Detail** button on the **Results** group of the **DESIGN/RATE** ribbon which opens the **Specification Check** window as shown below.

To review the flexure ratings at the 75.0 ft location, navigate to the **Stage 3** specification check detail for the analyzed member alternative, select the **Span 1 – 75.00 ft** point of interest, and then double-click on article **6A.4.2.1**

General Load Rating Equation – Concrete Flexure. This opens the **Spec Check Detail** window (see Figure 1) which shows the details of how the ratings were calculated. It is worth noting that since moment redistribution was not considered, the moment increments (DeltaM) for dead plus adjacent vehicle load (DL+AdjLL) and primary vehicle with impact (LL+I) are not available and they do not affect the rating factors (RF).

6A Load and		1.2.1 General L	oad Rating Equati	on - Concrete F	lexure												
6A.4.2 Gener 6A.4.2.1 Cor (AASHTO Manu PS Box Rect	Resistan ating Pro ral Load- norete FL ual for B Void - A	ce Factor F cedures Rating Equa exure Gener ridge Evalu t Location	Rating ation aal aation, Third = 75.0000 (ft	Edition wit :) - Left	h 2023 Inte Stage 3	erims)											
Input:																	
Condition Fa System Facto DC Moment (b DW Moment (b DW Moment (b DW-WS Moment DW-WS Moment Ignore Posit	actor or Max) Min) Max) Min) t (Max) t (Min) tive Mome:	= 1.00 $= 1.00$ $= -104.97$ $= -104.97$ $= 0.00$ $= 0.00$ $= 0.00$ $= 0.00$ nt = No	000 000 193 (kip-ft) 100 (kip-ft) 100 (kip-ft) 100 (kip-ft) 100 (kip-ft) 100 (kip-ft)														
Phi *	* K * Mn	- GammaDC *	M_DC - Gamma	DW * M_DW -	GammaDW_W	5 * M_DW_	WS - Gamm	aSE * M_SE	C - GammaAd	ij_LL * M_Ad	j_LL + Delt	aM(DL+AdjLI	L)				
RF =				G	ammaLL * M	LL + Del	taM(LL+I)										
Note: If the Otherw	e capacit wise the 1	y has been Resistance	overridden, t is computed a	the Resistan s per the S	ce is compu pecificatio	ited as o	override p	hi*overrid	ie capacity								
	Teed	Timin			Load	i Factors					Over	ride		DelterM	DelterM		
Load	Combo	State	LL (kip-ft)	LL (kip-ft)	DC	DW	DW-WS	LL	Phi	Mn (kip-ft)	Phi	Mn (kip-ft)	K	DL+AdjLL (kip-ft)	LL+I (kip-ft)	RF	Capacity (Ton)
DesignInv	1	STR-I	84.75		1.25	1.50	1.50	1.75	1.00	459.84			1.00			3,986	143.48
DesignInv DesignOp	1	STR-I STR-I	-629.99 84.75		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00			0.872 NA	31.39 NA
DesignOp	1	STR-I	-629.99		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00			1.130	40.69
DesignInv	2	STR-I STR-I	69.58		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00			1 052	27 00
Designinv	2	STR-I	-522.04		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00			1.052 NA	57.00 NA
DesignOp	2	STR-I	-522.04		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00			1.364	49.11
DesignInv	3	STR-I	0.00		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00			99,000	3564.00
DesignOp	3	STR-I	0.00		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00			99.000	3564.00
DesignOp	3	STR-I	-693.86		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00			1.026	36.95
LegalRout~	4	STR-I STR-I	0.00		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			99.000	3960.00
LegalRout~	5	STR-I	74.61		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			NA NA	3960.00 NA
redarabec~	5	STR-I	-480.38		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			1.539	61.57
LegalSpec~	6	STR-I	46.97		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			NA 2 450	61 25
LegalSpec~ LegalSpec~ LegalRout~		STR-I	49.77		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			2.450 NA	01.25 NA
LegalSpec~ LegalRout~ LegalRout~ LegalRout~	7				1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			1.996	79.83
LegalSpec~ LegalRout~ LegalRout~ LegalRout~ LegalRout~	777	STR-I	-370.52					1 20	0 90	1010 05							NZ
LegalSpec~ LegalRout~ LegalRout~ LegalRout~ LegalRout~ LegalRout~ LegalRout~	7 7 8 8	STR-I STR-I STR-I	-370.52 53.25 -375.16		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			NA 1.971	70.96

6 Type 3 - Legal Truck 7 Type 3-3 - Legal Truck 8 Type 3S2 - Legal Truck

Figure 1 – 6A.4.2.1 Concrete Flexure General

LRFR Rating with Moment Redistribution

Select the control option to allow moment redistribution as shown in <u>Member Alternative Description – Control</u> options and rerun the analysis as shown in <u>LRFR Rating</u>. During analysis with the moment redistribution allowed, the program displays information and warnings about applying moment redistribution to the bending moments for the considered live load types. As shown in the screenshot below, moment redistribution was applied to the HL-93 – Truck + Lane vehicular load and the load rating for this load may improve. For the HL-93 – 90% (Truck Pair + Lane) load, however, moment redistribution could not be applied which means load rating for this load will not improve.

Analysis		- 🗆 ×
Analysis - 48" PS Box		$\sim \times$
Analysis 40 r Soon	STAGE 3 STAGE 3 Info - Moment redistribution for Type 3-2 - Legal Truck at LegalRoutine rating level and Strength1 limit state. Info - Moment redistribution for Type 3-3 - Legal Truck at LegalRoutine rating level and Strength1 limit state. Info - Moment redistribution for Type 3 - Legal Truck at LegalRoutine rating level and Strength1 limit state. Info - Moment redistribution cannot improve critical LegalRoutine rating for Lane-Type Legal Load - Legal Truck at LegalSpecial rating level and Strength1 limit state. Warning - Moment redistribution cannot improve critical LegalRoutine rating for Lane-Type Legal Load - Legal Truck + Lane because it is governed by positive flexure. Warning - Moment redistribution cannot improve rating for Lane-Type Legal Load - LegalTruck + Lane at LegalRoutine rating level. Warning - Moment redistribution cannot improve rating for Lane-Type Legal Load - LegalTruck + Lane at LegalRoutine rating level. Warning - Moment redistribution cannot improve rating for HL-93 (US) - 90% (Truck Pair + Lane). Moment redistribution cannot improve rating for HL-93 (US) - Tandem + Lane because it is not governed by flexure. Warning - Moment redistribution for HL-93 (US) - Tandem + Lane at DesignOp rating level and Strength1 limit state. Info - Moment redistribution for HL-93 (US) - Truck + Lane at DesignOp rating level and Strength1 limit state. - Location - 0.0000 (ft) - Location - 7.5000 (ft) - Location - 7.5000 (ft) - Location - 3.7.020 (ft)	
	C Errors 🛆 Warnings	
	Type Description	
	<u>Warning - Superstructure definition humidity and System Default humidity is not entered. Default value of 60% will be used.</u>	<u>^</u>
	warning - keation Distribution Factors are averaged from the Shear Distribution Factors! Define Contension and the DDD Estimate and the shear best evaluated for an evaluate the shear t	
	warming - rangue venice LnP rangue incer (US) is not applicable to preserve members.	u positive flavora
	warning - woment redistribution cannot improve critical Legalixoutine rating for Lane-Type Legal Load - Legal ruck + Lane because it is governed by woment enditativities present improve critical Legalixoutine rating for Lane-Type Legal Load - Legalixoutine ratio	y positive flexure.
	A warning - workers reasonable improve rating for Lare-type Equil court - Legal route - Legal rou	
	A Warning - Moment redictivition cannot improve critical Designative valies for HLO 2015 - Ended method activity and a with a second second activity of the second	
	A Warring - Moment redistribution cannot improve cincle or sagning rating on the 30 (63) - tandem - tand because in a tot governed by flexule.	
		Close

The new **Rating Results Summary** with moment redistribution allowed is as shown below and it can be observed that the critical rating factor for the HL-93 Truck + Lane load at inventory level increased with moment redistribution to 0.913 from 0.872 without moment redistribution. However, the new factor is now at a different location and due to SERVICE-III PS Tensile Stress and not due to STRENGTH-I Concrete Flexure. This means that tensile stress now controls for this load combination and the rating factor due to flexure is even higher which will be verified by reviewing the flexure rating article in <u>Specification Check Detail with Moment Redistribution</u>.

А	Analysis Results - 48" P	'S Box									- 0	×
	Print Print											
Rep	port type:	C Lane/Impact	loading type	Di	splay Format							
Rat	ting Results Summary			vilod Si	ingle rating lev	el per row	\sim					
	Live Load	Live Load Type	Rating Method	Rating Level	Load Rating (Ton)	Rating Factor	Location (ft)	Location Span-(%)	Limit State	Impact	Lane	_
	HL-93 (US)	Truck + Lane	LRFR	Inventory	33.51	0.931	37.13	1 - (49.5)	SERVICE-III PS Tensile Stress	As Requested	As Requested	
	HL-93 (US)	Truck + Lane	LRFR	Operating	52.25	1.451	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	HL-93 (US)	90%(Truck Pair + Lane)	LRFR	Inventory	28.50	0.792	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	HL-93 (US)	90%(Truck Pair + Lane)	LRFR	Operating	36.95	1.026	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	1
	HL-93 (US)	Tandem + Lane	LRFR	Inventory	37.78	1.049	37.13	1 - (49.5)	SERVICE-III PS Tensile Stress	As Requested	As Requested	
	HL-93 (US)	Tandem + Lane	LRFR	Operating	61.32	1.703	37.13	1 - (49.5)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	Lane-Type Legal Load	Truck + Lane	LRFR	Legal	3960.00	99.000	0.00	1 - (0.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	NRL	Axle Load	LRFR	Legal	72.91	1.823	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	Type 3	Axle Load	LRFR	Legal	71.59	2.864	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	Type 3-3	Axle Load	LRFR	Legal	102.51	2.563	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
	Type 3S2	Axle Load	LRFR	Legal	91.12	2.531	75.00	1 - (100.0)	STRENGTH-I Concrete Flexure	As Requested	As Requested	
												-
۵۵۹		on 7 5 1 3001										
An-	alusis proforance catting	None										
Ana	aysis preference setting:	None										
												Close

For the HL-93 – 90% (Truck Pair + Lane) load at the inventory level, moment redistribution could not be applied, and the rating remained the same at 0.792. This is because moment redistribution reduces negative moments over supports at the expense of increasing positive midspan moments. Since vehicular loads consisting of truck pair and lane load are only considered for negative bending moments, it is not possible to determine the increase of positive midspan moments and moment redistribution cannot be applied.

To confirm that only negative moments are considered for the HL-93 – 90% (Truck Pair + Lane) load, display the bending moment diagram using the **Results Graph** window as shown below.

Specification Check Detail with Moment Redistribution

When the control option to allow moment redistribution is selected by the user, the program processes the following additional specification check articles during analysis:

- 5.10.8.1.2a Flexural Reinforcement (in negative moment regions)
- 5.10.8.1.2c Negative Moment Reinforcement (at support locations)
- 5.6.3.4 Moment Redistribution Percentage (at support locations)
- 5.6.3.4 Maximum Allowable Moment Redistribution Moments (at support locations)

As described in AASHTO LRFD/LRFR Superstructure Method of Solution Manual, these articles (highlighted in orange in the screenshot below) check if requirements for applying moment redistribution are satisfied and determine the maximum value of moment redistribution that can occur at support locations. Based on the support values and the redistribution optimization procedure, moment increments (denoted DeltaM) are interpolated at each POI between supports and applied to bending moments in the following specification check articles (highlighted in yellow in the screenshot below):

- 5.6.3.2 Flexural Resistance
- 5.6.3.3 Minimum Reinforcement
- 6A.4.2.1 General Load-Rating Equation Concrete Flexure

Open each of the highlighted articles and review their contents.

To verify that the flexure load rating factor increased for HL-93 Truck + Lane load at inventory level, open the article titled **6A.4.2.1 General Load-Rating Equation – Concrete Flexure** (see Figure 2). On the second row in

the table, the rating factor is now 1.120 which is an increase of 0.248 (28%) from the initial value of 0.872. This increase is due to the DeltaM moment increments which are the result of moment redistribution.

Since moment redistribution does not apply to the HL-93 - 90% (Truck Pair + Lane) vehicle, the DeltaM values for that vehicle are not calculated and its rating factor at the inventory level stayed the same at 0.792 with and without moment redistribution.

Spec Check Detail for 6A.4.2.1	General Load Rating Equation - Concrete Flexure
6A Load and Resistance 1 6A.4 Load Rating Procedu 6A.4.2 General Load-Rat: 6A.4.2.1 Concrete Flexuu (AASHTO Manual for Bridg	Factor Rating ures ing Equation re General ge Evaluation, Third Edition with 2023 Interime)
PS Box Rect Void - At L	ocation = 75.0000 (ft) - Left Stage 3
Input:	
Condition Factor = System Factor = DC Moment (Max) = DW Moment (Min) = DW Moment (Min) = DW-MS Moment (Max) = DW-WS Moment (Min) = Ignore Positive Moment :	1.0000 -104.9793 (kip-ft) -104.9793 (kip-ft) -104.9793 (kip-ft) 0.0000 (kip-ft) 0.0000 (kip-ft) 0.0000 (kip-ft) = No

Note: If the capacity has been overridden, the Resistance is computed as override phi*override capacity. Otherwise the Resistance is computed as per the Specification.

	Lond	Timit		2.45	Loa	d Factors	3				Ove	rride		DaltaM	DeltaM	\	
Load	Combo	State	LL (kip-ft)	LL (kip-ft)	DC	DW	DW-WS	LL	Phi	Mn (kip-ft)	Phi	Mn (kip-ft)	K	DL+AdjLL (kip-ft)	LL+I (kip-ft)	RF	Capacity (Ton)
DesignInv	1	STR-I	84.75		1.25	1.50	1.50	1.75	1.00	459.84			1.00	26.24	220.50	1 532	55.13
DesignInv	1	STR-I	-629.99		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00	26.24	220.50	1.120	40.31
DesignOp	1	STR-I	84.75		1.25	1.50	1.50	1.35	1.00	459.84			1.00	26.24	170.10	1.985	71.47
DesignOp	1	STR-I	-629.99		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00	26.24	170.10	1.451	52.25
DesignInv	2	STR-I	69.58		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00			NA	NA
DesignInv	2	STR-I	-522.04		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00			1.052	37.88
DesignOp	2	STR-I	69.58		1.25	1.50	1.50	1.35	1.00	459.84			1.00	23.58	126.64	2.573	92.62
DesignOp	2	STR-I	-522.04		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00	23.58	126.64	1.704	61.33
DesignInv	3	STR-I	0.00		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00			99 000	3564.00
DesignInv	3	STR-I	-693.86		1.25	1.50	1.50	1.75	0.90	-1213.95			1.00			0.792	28.50
DesignOp	3	STR-I	0.00		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00			99.000	3564.00
DesignOp	3	STR-I	-693.86		1.25	1.50	1.50	1.35	0.90	-1213.95			1.00			1.026	36.95
LegalRout~	4	STR-I	0.00		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			99.000	3960.00
LegalRout~	4	STR-I	0.00		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00			99.000	3960.00
LegalSpec~	5	STR-I	74.61		1.25	1.50	1.50	1.30	1.00	459.84			1.00	18.30	87.09	3.112	124.46
LegalSpec~	5	STR-I	-480.38		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00	18.30	87.09	1.823	72.91
LegalRout~	6	STR-I	46.97		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00	16.97	50.73	NA	NA
LegalRout~	6	STR-I	-301.82		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00	16.97	50.73	2.864	71.59
LegalRout~	7	STR-I	49.77		1.25	1.50	1.50	1.30	1.00	459.84			1.00	26.24	96.34	3.507	140.29
LegalRout~	7	STR-I	-370.52		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00	26.24	96.34	2.563	102.51
LegalRout~	8	STR-I	53.25		1.25	1.50	1.50	1.30	1.00	459.84			1.00	26.24	97.54	3.387	121.93
LegalRout~	8	STR-I	-375.16		1.25	1.50	1.50	1.30	0.90	-1213.95			1.00	26.24	97.54	2.531	91.12

Legend: NA - Resistance and live load are of opposite sign so rating factor is not applicable. \ast - Positive moment rating ignored.

Figure 2 - 6A.4.2.1 General Load-Rating Equation - Concrete Flexure

The flexural resistance article (see Figure 3) is also affected by moment redistribution through moment increments DeltaMu. For HL-93 Truck + Lane load at inventory level, the Mr/Mu ratio with moment redistribution is equal to:

$$\frac{M_r}{M_u} = \frac{-1092.55}{-1233.71 + 246.74} = 1.107$$

which is an increase from the ratio without moment redistribution that is equal to:

$$\frac{M_r}{M_u} = \frac{-1092.55}{-1233.71} = 0.886$$

In negative moment regions, moment redistribution can potentially increase flexure rating factor and design ratios, but it is worth remembering that in positive moment regions the rating factors and design ratios may decrease due to moment redistribution as the moment increments DeltaM will increase the positive moments. The design ratios for the HL-93 - 90% (Truck Pair + Lane) vehicle are unchanged as moment redistribution does not apply to this vehicle and DeltaMu increments are not calculated.

The increments are also not calculated for any load combination under the SER-III limit state because moment redistribution applies only to the strength limit states.

Figure 3 – 5.6.3.2 Flexural Resistance

One more specification check article affected by moment redistribution is the minimum reinforcement article (see Figure 4). When moment redistribution is applied to Mu through the DeltaMu increment, the Mr/MrMin ratio may change if MrMin is governed by Mr2 which in turn is equal to 1.33 Mu.

1 0 01	1 D - 14 - 563 - 54												
Spec Che	ck Detail for 5.6.3.3 Mi	nimum Keinforce	ement										
5.6 Des:	ign for Flexural	and Axial Ef	fects - B Reg	ions	_								
5.6.3.3 (AASHTO	Minimum Reinford LRFD Bridge Desi	ement gn Specifica	tions. Ninth	Edition)									
PS Box 1	- Rect Void - At Lo	cation = 75.	.0000 (ft) - I	eft Stage	3								
Cross Se	ection Properties	for Prestre	ess box beam w	ith Rectangul	ar void								
Name: B	II-48 Girder f'	c = 6.00(ksi	.) Girder	f'ci = 5.10(k	si)								
Beam He: Top Slab Bottom 3 Shear Ke Shear Ke Bl B2 B3	lght o Width o Thick Slab Width Slab Thick Sy Top ey Height ey Depth	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.n) Side % .n) .n) .n) .n) .n) .n) .n) .n) .n) .n)	Wall Thickness	- = 5	5.00(in)							
Slab f'o Effectiv Effectiv	; ve Slab Width ve Slab Thickness	= 4.00 = 90.00 = 7.50)(ksi))(in) H)(in) H	aunch Width aunch Thickne	33	= 47.25 = 0.50	(in) (in)						
As (in^2) 1.86 3.96 2.79	Dist. From Bottom (in) 3.00 37.50 35.50												
Section	will be analyzed	in the regi as a reinfo	on over the p proed concrete	section.	he simple sp	an bearings.							
Input: fr beam Inertia yBot	= 0.59 (k = 253622.51 (i = 25.29 (i	si) n^4) n)	fr deck STop SBot	= 0.48 = -19754.87 = 10027.05	(ksi) (in^3) (in^3)								
Gamma1 =	= 1.60 = 1.10												
Gamma3 •	= 0.67	tfn i Commo	tene) * Ca h	Maa * (9a/9aa		15 6 9 9 1)							
(Note:	For reinforced c	oncrete memb	ers Sc = Snc)	and * (Sc/Sho	: - 1)]	(5.6.3.3-1)							
Mr1 = Mo	er Arti	cle 5.6.3.3											
MrZ = 1. MrMin =	Min(Mr1, Mr2)	Article 5.	6.3.3										
Allow Mo	oment Redistribut	ion Control	Option: Yes										
Moment Monte: In	Redistribution Qu f the capacity ha	alified: Yes s been overr	s, redistribut	ion did occur	omputed as c	verride phi*	override cap	acity.					
01	therwise the Resi	stance is co	mputed as per	the Specific	ation.	,		,-					
Limit State	Load Comb	Mu (kip-ft)	DeltaMu (kip-ft)	Sc (in^3)	Mcr (kip-ft)	Mr1 (kip-ft)	Mr2 (kip-ft)	MrMin (kip-ft)	Overn Phi	Mnr (kip-ft)	Mr M (kip-ft)	DR = r/MrMin	
STR-I	1, DesInv	17.08	246.74	10027.05	523.97	523.97	350.88	350.88			459.84	1.311	Pass
STR-I STR-I	1, DesOp	-16.82	196.34	10027.05	523.97 -842.87	523.97 -842.87	238.77	238.77			459.84	1.926	Pass
STR-I STR-I	2, DesInv 2, DesInv	-9.46		-19754.87	-842.87	-842.87	-12.58	-12.58			-1092.55	86.856	Pass
STR-I STR-I	2, DesOp 2 DesOp	-37.29	150.22	10027.05	523.97	523.97	150.19	150.19			459.84	3.062	Pass
STR-I STR-I	3, DesInv	-131.22		-19754.87	-842.87	-842.87	-174.53	-174.53			-1092.55	6.260	Pass
STR-I	3, DesOp	-131.22		-19754.87	-842.87	-842.87	-174.53	-174.53			-1092.55	6.260	Pass
SIR-I STR-I	4, LegalRout	-1067.94		-19754.87	-842.87	-842.87	-1420.36	-842.87			-1092.55	6.260	Pass
STR-I STR-I	 LegalRout LegalSpec 	-131.22 -34.24	105.39	-19754.87 10027.05	-842.87 523.97	-842.87 523.97	-174.53 94.63	-174.53 94.63			-1092.55 459.84	6.260 4.859	Pass Pass
STR-I STR-I	 5, LegalSpec 6, LegalRout 	-755.72	105.39 67.70	-19754.87 -19754.87	-842.87 -842.87	-842.87 -842.87	-864.95 -3.28	-842.87 -3.28			-1092.55	1.296 333.283	Pass Pass
STR-I STR-I	 LegalRout LegalRout 	-523.59	67.70 122.58	-19754.87 10027.05	-842.87 523.97	-842.87 523.97	-606.34 74.56	-606.34 74.56			-1092.55 459.84	1.802 6.167	Pass Pass
STR-I STR-I	7, LegalRout 8, LegalRout	-612.90	122.58 123.79	-19754.87 10027.05	-842.87 523.97	-842.87 523.97	-652.13 82.18	-652.13 82.18			-1092.55 459.84	1.675 5.596	Pass Pass
STR-I SFR-III	8, LegalRout	-618.93	123.79	-19754.87	-842.87	-842.87	-658.55	-658.55			-1092.55	1.659	Pass
SER-III	1, DesInv	-608.97		-19754.87	-842.87	-842.87	-809.94	-809.94			-1092.55	1.349	Pass
SER-III	2, Desinv	-522.61		-19754.87	-842.87	-842.87	-695.08	-695.08			-1092.55	1.572	Pass
SER-III	3, Desinv	-660.07		-19754.87	-842.87	-842.87	-877.89	-842.87			-1092.55	1.296	Pass
SER-III	4, LegalRout	-104.98		-19754.87	-842.87	-842.87	-139.62	-139.62			-1092.55	7.825	Pass
SER-III SER-III	5, LegalSpec 5, LegalSpec	-585.36		-19754.87	-842.87	-842.87	-778.53	-778.53			-1092.55	1.403	Pass
SER-III SER-III	 LegalRout LegalRout 	-58.01 -406.80		-19754.87 -19754.87	-842.87	-842.87	-77.15	-77.15			-1092.55	2.019	Pass Pass
SER-III SER-III	7, LegalRout 7, LegalRout	-55.21		-19754.87 -19754.87	-842.87	-842.87	-73.42	-73.42			-1092.55	14.880	Pass
SER-III SER-III	8, LegalRout 8, LegalRout	-51.73		-19754.87 -19754.87	-842.87	-842.87	-68.80	-638.59			-1092.55	15.880	Pass
Load Cor	bination Legend:												
Code	Vehicle												
1	HL-93 (US) - T	ruck + Lane											
2	HL-93 (US) - T HL-93 (US) - 9	andem + Lane 0%(Truck Pai	: .r + Lane)										
4 5 6 7	Lane-Type Lega NRL - Legal Tr Type 3 - Legal Type 3-3 - Legal	l Load - Leg uck Truck al Truck al Truck	al Truck + La	ne									
8	Type 352 - Led												

Figure 4 – 5.6.3.3 Minimum Reinforcement

All specification check articles affected by moment redistribution are related to flexure only because moment redistribution does not apply to shear effects. In the bridge model considered in this tutorial, shear effects are

ignored, and no shear related articles are shown but even if shear was not ignored and shear articles were processed, they would not be affected by moment redistribution.

The additional specification check articles processed only when the moment redistribution is allowed by the user are shown in Figure 5 through Figure 8. Open each article and review its contents.

Figure 5 - 5.10.8.1.2a Flexural Reinforcement

The articles shown in Figure 5 and Figure 6 check several reinforcement requirements that must pass for moment redistribution to be applied. For instance, in the negative moment reinforcement article (Figure 6), the required length of the reinforcement on the right side of the first interior support is calculated to be 28.881 ft which is almost half of the 60.0 ft span between interior supports. Since the reinforcement in the original imported bridge model extended only 15.0 ft from the support, the reinforcement length had to be adjusted. Otherwise, the length check would fail, and redistribution would not be applied at all.

Spec Check Detail for 5.10.8.1.2c Negative Moment Reinforcement

10.8.1 Gen 10.8.1.2 F	eral lexural	Reinforcemen	t						
10.8.1.2c I ASHTO LRFD	Negative Bridge	Moment Rein Design Speci	forcement fications,	Ninth Editi	.on)				
Box Rect	Void - A	t Location =	75.0000 (ft) - Left	Stage 3				
erall Dept fective Dep ear Span L stance To Tension	h pth ength Inflecti	= 4 = 3 = 7 .on Point = 1 = 6	1.00(in) 6.67(in) 4.25(ft) 3.96(ft) .75(in^2)						
p Bar Requ p Bar Requ	ired Ext ired Ler	ension = M gth = (ax(Effection Distance To	ve Depth, 1/ o Inflection	16 * Clear Point) + (Span Lengt Top Bar Re	h, 12 * Bar quired Exte	Diameter) nsion)	
(Sum of T Then <pa:< td=""><td>op Bar A ss></td><td>s with Requi (LeftTerm)</td><td>red Length</td><td>Satisfied)</td><td>>= (AsTensi >= (Right</td><td>on / 3) Th Term)</td><td>en <pass></pass></td><td></td><td></td></pa:<>	op Bar A ss>	s with Requi (LeftTerm)	red Length	Satisfied)	>= (AsTensi >= (Right	on / 3) Th Term)	en <pass></pass>		
ist. From Bottom (in)	Bar Size	Bar Diameter (in)	Bar Area (in^2)	Number of Bars	As (in^2)	Length (ft)	Required Extension (ft)	Required Length (ft)	Required Length Satisfied
37.50	6	0.75	0.44	9.00	3.96	20.000	4.641	18.603	Yes
Box Rect	Void - A	t Location =	75.0000 (1	ft) - Right	Stage 3				
erall Dept	h	= 4	1.00(in)						
Teccine pel	ength Inflecti	= 5 on Point = 2 = 6	8.50(ft) 5.22(ft) .75(in^2)						
ear Span Le stance To : Tension	ired Ext	ension = M igth = (1	ax(Effectiv Distance To	ve Depth, 1/ D Inflection	16 * Clear Point) + (Span Lengt Top Bar Re	h, 12 * Bar quired Exte	Diameter) nsion)	
ear Span Lestance To Stance To Stance To Stance To Standard Stand Standard Standard Stand Standard Standard Stan	ired Ler								
ear Span L stance To Tension p Bar Requ. p Bar Requ. (Sum of To Then (Bar	ired Ler op Bar #	s with Requi (LeftTerm)	red Length	Satisfied)	>= (AsTensi >= (Right	on / 3) Th Term)	en <pass></pass>		
ear Span L stance To Tension p Bar Requ. p Bar Requ. (Sum of T Then <pa: ist. From</pa: 	ired Ler op Bar A ss>	(LeftTerm) Bar	Bar	Satisfied)	>= (AsTensi >= (Right	on / 3) Th Term)	Required	Required	Required
ear Span L stance To Tension p Bar Requ. (Sum of T Then <pa: ist. From Bottom (in)</pa: 	ired Ler op Bar # ss> Bar Size	Ls with Requi (LeftTerm) Bar Diameter (in)	Bar Area (in^2)	Satisfied) Number of Bars	>= (AsTensi >= (Right As (in^2)	on / 3) Th Term) Length (ft)	Required Extension (ft)	Required Length (ft)	Required Length Satisfied

Figure 6 – 5.10.8.1.2c Negative Moment Reinforcement

Spec Check Detail for 5.6.3.4 Percentage Concrete Moment Redistribution Percentage														
5 Concrete Structures 5.6 DESIGN FOR FIEXURAL AND AXIAL FORCE EFFECTS - B REGIONS 5.6.3 Flexural Members 5.6.3.4 Momene Redistriction Percentage - Ar Support Location (AASHTO LEAPD Bridge Design Specifications, Ninth Edition)														
PS Box Rect Void - At Location = 75.0000 (ft) - Left Stage 3														
<pre>If Et >= 1.5Etl and Flexure Type is Neg, moment redistribution can occur Maximum moment reduction percentage (MRP) = Max(20.0, 1000Et)</pre>														
Minimum value of left side MRP and right side MRP will be used as MRP on both sides of this support.														
Limit State	Load Combo	Flexure Type	Maximum Negative Mu (kip-ft)	Et	Etl	1.5Etl	Redist. Can occur?	1000Et (%)	Maximum Reduction Percentage (%)					
STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I	1, DesInv 1, DesOp 2, DesInv 2, DesOp 3, DesInv 3, DesOp 4, LegalR~ 5, LegalS~	Neg Neg Neg Neg Neg Neg Neg	-1233.71 -981.72 -1044.80 -835.98 -1345.48 -1067.94 -131.22 -755.72	0.043538 0.043538 0.043538 0.043538 0.043538 0.043538 0.043538 0.043538 0.043538	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075	Yes Yes Yes Yes Yes Yes Yes Yes	$\begin{array}{r} 43.54\\ 43.54\\ 43.54\\ 43.54\\ 43.54\\ 43.54\\ 43.54\\ 43.54\\ 43.54\\ 43.54\end{array}$	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00					
STR-I STR-I STR-I	6, Legalk~ 7, Legalk~ 8 Legalk~	Neg	-612.90	0.043538	0.005	0.0075	Yes	43.54	20.00					
Load Comb	STR-I 8, LegalR~ Neg -618.93 0.043538 0.005 0.0075 Yes 43.54 20.00 Load Combination Legend:													
1 2 3 4 5 6 7 8	Code Vehicle 1 HL-93 (US) - Truck + Lane 2 HL-93 (US) - Tandem + Lane 3 HL-93 (US) - Obj(Truck Pair + Lane) 4 Lane-Type Legal Load - Legal Truck + Lane 5 NRL - Legal Truck 6 Type 3 - Legal Truck 7 Type 332 - Legal Truck 8 Type 352 - Legal Truck													

In the moment redistribution percentage article (Figure 7), strain requirements are checked to determine if moment redistribution can be applied. Also, the maximum percentages of moment reduction at supports are calculated. Based on the percentages, the maximum moment increments (DeltaM) at supports are calculated in the maximum allowable moment redistribution moments article (Figure 8).

🔐 Spec Check Detail for 5.6.3.4 Moment Concrete Moment Redistribution Moments

5 Concrete 5.6 DESIGN	Structures	AND AXIAL	FORCE EF	FECTS - B R	EGIONS		_						
5.6.3 Flex 5.6.3.4 Ma	ural Members ximum Allowab ED Bridge Dee	le Moment H	Redistrib	ation Momen	ts - At Sup	oport Locat:	ion						
PS Box Rec	t Void - At L	ocation = 1	75.0000 (:	ft) - Left	Stage 3	3							
Input: M_DC = M_DW = M_DW-WS = M_PT = M_SE =	-104.98 kip-f 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft 0.00 kip-ft	t											
Limit State	Load Combo	Flexure Type	MRP (%)	M_LL (kip-ft)	M_AdjLL (kip-ft)								
STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I	1, DesInv 1, DesOp 2, DesInv 2, DesOp 3, DesInv 3, DesOp 4, LegalR~ 5, LegalR~ 6, LegalR~ 8, LegalR~	Neg Neg Neg Neg Neg Neg Neg Neg	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	-629.99 -629.99 -522.04 -522.04 -693.86 -693.86 0.00 -480.38 -301.82 -370.52 -375.16	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0								
Limit State	Load Combo	DC	DW	DW-WS	SE	PT	LL		AdjLL				
STR-I STR-I STR-I STR-I	1 1 2 2	1.25 1.25 1.25 1.25	1. 1. 1. 1.	50 1. 50 1. 50 1. 50 1.	50 0. 50 0. 50 0. 50 0.	.00 0 .00 0 .00 0	.00 .00 .00	.75	0.00				
STR-I STR-I STR-I STR-I STR-I STR-I STR-I	3 4 5 7 8	1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	1. 1. 1. 1. 1. 1.	50 1. 50 1. 50 1. 50 1. 50 1. 50 1. 50 1. 50 1.	50 0. 50 0. 50 0. 50 0. 50 0. 50 0. 50 0. 50 0. 50 0. 50 0. 50 0. 50 0. 50 0.	.00 0 .00 0 .00 0 .00 0 .00 0 .00 0 .00 0	.00 .00 .00 .00 .00 .00		0.00				
SER-III SER-III SER-III SER-III SER-III SER-III SER-III	2 3 4 5 6 7 8	1.00 1.00 1.00 1.00 1.00 1.00 1.00	1. 1. 1. 1. 1. 1.	00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1. 00 1.	00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0.	.00 0 .00 0 .00 0 .00 0 .00 0 .00 0	.00 .00 .00 .00 .00 .00	0.80 0.80 0.00 0.00 0.00 0.00	0.00				
Maximum Al Max_Delta_	lowable Momen M = -MRP * M	t Redistrik	oution Mon	ments:									
where: MRP = maxi M = elas	mum reduction tic moment du	percentage e to applie	d load										
Limit State	Load Combo	Flexure Type	MRP (%)	DC (kip-ft)	DW (kip-ft)	DW-WS (kip-ft)	Unfactored SE (kip-ft)	l Max_D P (kip	elta_M - T -ft) (LL kip-ft)	AdjLL (kip-ft)	Factored M DL+AdjLL (kip-ft)	ax_Delta_M LL+I (kip-ft)
STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I STR-I	1, DesInv 1, DesOp 2, DesInv 3, DesOp 4, LegalR- 5, LegalS- 6, LegalR- 8, LegalR- 8, LegalR-	Neg Neg Neg Neg Neg Neg Neg Neg Neg	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00	21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00					0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	126.00 126.00 104.41 104.41 138.77 138.77 0.00 96.08 60.36 74.10 75.03		26.24 26.24 26.24 26.24 26.24 26.24 26.24 26.24 26.24 26.24 26.24	220.50 170.10 122.72 140.95 242.85 187.34 0.00 124.90 78.47 96.34 97.54
Load Combi	nation Legend	:											
Code	Vehicle	_											
1 2 3 4 5 6 7 8	HL-93 (US) - HL-93 (US) - HL-93 (US) - Lane-Type Leg NRL - Legal T Type 3 - Lega Type 3-3 - Le Type 352 - Le	Truck + Lar Tandem + La 90%(Truck H al Load - I ruck 1 Truck gal Truck gal Truck gal Truck	ne nne Pair + Lar Jegal Truc	ne) :k + Lane									

Figure 8 - 5.6.3.4 Maximum Allowable Moment Redistribution Moments

The actual amount of moment redistribution applied for each vehicle is reported in the Moment Redistribution

Report discussed in the next section.

Moment Redistribution Report

Detailed information about the amount of moment redistribution applied for each vehicle at each location and how moment redistribution affects the flexure rating factors is available in the **Moment Redistribution Report**. To view the report, click on the **Engine Output** button located on the **Results** group of the **DESIGN/RATE** ribbon and then double-click on the **Moment Redistribution Report** item in the tree showing the available engine output files as shown in the screenshot below.

The report is a text file, and it will be open in the default text viewer. The format of the report file is shown in Figure 9 and Figure 10 which include locations from the first span for selected vehicles. Highlighted in the figures are the controlling rating factors before and after moment redistribution, and the percentages of applied moment redistribution at the first interior supports.

For the HL-93 Truck + Lane vehicle (Figure 9), the applied redistribution percentage at Support 2 (first interior support) is 20% which is equal to the maximum redistribution percentage. This is because even when the maximum redistribution percentage is applied, the minimum negative flexure rating factor is still smaller than the positive flexure rating factor, so it is beneficial overall to apply as much redistribution as allowed.

On the other hand, for the Type 3 Legal Truck vehicle (Figure 10), the applied redistribution percentage at Support 2 (first interior support) is 12.93% which is smaller than the maximum redistribution percentage of 20%. This is because if the maximum redistribution percentage was applied the minimum positive flexure rating factor would become smaller than the negative flexure rating factor. In other words, too much redistribution would be applied and the detrimental effect of moment redistribution in the positive flexure would exceed the beneficial effect in negative flexure. In such cases, the program attempts to optimize the amount of applied moment redistribution by reducing

the applied redistribution percentages at supports so that the rating factors in positive and negative flexure after moment redistribution are equal. Reducing the applied redistribution percentage to 12.93% achieves this goal and both positive and negative flexure rating factors after moment redistribution are equal to 2.864 which is an increase of 0.414 (16.9%) from the controlling negative flexure rating factor before moment redistribution of 2.450.

MomentRedis	stributionRep	ort.txt - No	tepad											
File Edit Form	nat View	Help												
Moment redi	stributio	on for H	L-93 (US) -	Truck + La	ne at Desig	gn Inventor	y rating le	vel and Stren	gthI limit	state.				
Betore momen	nt redist	ributio	n:	4 050										
Minimum po	ositive f	lexure	rating facto	pr = 1.252	(d) 37.125 +t	E								
Minimum no	egative f	lexure	rating facto	br = 0.872	@ /5.000 +1	E								
Atter momen	c realstr	-ibución	: noting foct	$n = \frac{1}{1} $	0 27 125 £+	-								
Minimum p	osicive i orativo f	Flavura	rating fact	n = 1.101	@ 75 000 ft	-								
PITITING IN TH	cguerve i	ICAULC	racing race	JI - 1.120	@ /J.000 II	-		Max	Appli	he				
				ocation	Percent		R	edistribution	Redistrib	tion				
Location				in Span	in Snan [lithΔ+ IC	11+T	Percentage	Percenta	age				
(ft)	Support	Side	Span	(ft)	(%) ((kip-ft)	(kip-ft)	(%)	(%)	-0-				
0.000		Right	· 1	0.000	0.000	0.00	0.00	0.000		0.000				
75.000	2	Left	1	75.000	100.000	-131.22	-1102.49	20.000	20	0.000				
75.000	2	Right	2	0.000	0.000	-131.22	-1102.49	20.000	20	0.000				
135.000	3	Left	2	60.000	100.000	-80.87	-807.27	20.000	20.000					
135.000	3	Right	3	0.000	0.000	-80.87	-807.27	20.000	20	0.000				
195.000	4	Left	3	60.000	100.000	0.00	0.00	0.000		0.000				
					Positive	Negative	Initial				Max	Max	Annlied	Annlied
			location	Percent	Flexure	Flexure	Flexure	Initial	Initial	Initial	Delta	Delta	Delta	Delta
Location			in Span	in Span	Capacity	Capacity	Capacity	DL+AdiLL	LL+I	Controlling	DL+AdiLL	LL+I	DL+AdiLL	LL+I
(ft)	Side	Span	(ft)	(%)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	Flexure RF	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)
0.000	Right	1	0.000	0.000	596.96	5 -87.1	6 596.9	6 0.00	0.00	99.000	0.00	0.00	0.00	0.0
1.750	Left	1	1.750	2.333	1931.13	3 -231.9	2 1931.1	3 138.81	165.56	10.826	0.61	5.14	0.61	5.1
1.750	Right	1	1.750	2.333	1931.13	3 -231.9	2 1931.1	3 138.81	165.56	10.826	0.61	5.14	0.61	5.1
7.500	Left	1	7.500	10.000	2764.96	5 -234.3	8 2764.9	6 547.41	629.93	3.520	2.62	22.05	2.62	22.0
7.500	Right	1	7.500	10.000	2764.96	5 -234.3	8 2764.9	6 547.41	629.93	3.520	2.62	22.05	2.62	22.0
15.000	Left	1	15.000	20.000	3095.55	-142.6	7 3095.5	5 970.89	1057.44	2.009	5.25	44.10	5.25	44.1
15.000	Right	1	15.000	20.000	3095.55	5 -142.6	7 3095.5	5 970.89	1057.44	2.009	5.25	44.10	5.25	44.1
21.750	Left	1	21.750	29.000	3202.96	5 -54.3	2 3202.9	6 1246.07	1278.76	1.530	7.61	63.94	7.61	63.9
21.750	Right	1	21.750	29.000	3202.96	0.0	0 3202.9	6 1246.07	1278.76	1.530	7.61	63.94	7.61	63.9
22.500	Left	1	22.500	30.000	3202.96	0.0	0 3202.9	6 1270.45	1296.81	1.490	7.87	66.15	7.87	66.1
22.500	Kight	1	22.500	30.000	3202.96	0.0	0 3202.9	b 12/0.45	1296.81	1.490	/.8/	66.15	/.8/	66.1
30,000	Lett	1	30.000	40.000	3/11/.90	0.0	0 3/0/.9	n 1446.09	1295.08	1.259	10.50	88.20	10.50	88.2

Location			in Span	in Span	Capacity	Capacity	Capacity	DL+AdjLL	LL+I	Controlling	DL+AdjLL	LL+I	DL+AdjLL	LL+I	Positive	Negative
(ft)	Side	Span	(ft)	(%)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	Flexure RF	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	Flexure RF	Flexure RF
0.000	Right	1	0.000	0.000	596.96	-87.16	596.96	0.00	0.00	99.000	0.00	0.00	0.00	0.00	99.000	99.000
1.750	Left	1	1.750	2.333	1931.13	-231.92	1931.13	138.81	165.56	10.826	0.61	5.14	0.61	5.14	10.496	99.000
1.750	Right	1	1.750	2.333	1931.13	-231.92	1931.13	138.81	165.56	10.826	0.61	5.14	0.61	5.14	10.496	99.000
7.500	Left	1	7.500	10.000	2764.96	-234.38	2764.96	547.41	629.93	3.520	2.62	22.05	2.62	22.05	3.397	99.000
7.500	Right	1	7.500	10.000	2764.96	-234.38	2764.96	547.41	629.93	3.520	2.62	22.05	2.62	22.05	3.397	99.000
15.000	Left	1	15.000	20.000	3095.55	-142.67	3095.55	970.89	1057.44	2.009	5.25	44.10	5.25	44.10	1.924	99.000
15.000	Right	1	15.000	20.000	3095.55	-142.67	3095.55	970.89	1057.44	2.009	5.25	44.10	5.25	44.10	1.924	99.000
21.750	Left	1	21.750	29.000	3202.96	-54.32	3202.96	1246.07	1278.76	1.530	7.61	63.94	7.61	63.94	1.452	99.000
21.750	Right	1	21.750	29.000	3202.96	0.00	3202.96	1246.07	1278.76	1.530	7.61	63.94	7.61	63.94	1.452	99.000
22.500	Left	1	22.500	30.000	3202.96	0.00	3202.96	1270.45	1296.81	1.490	7.87	66.15	7.87	66.15	1.412	99.000
22.500	Right	1	22.500	30.000	3202.96	0.00	3202.96	1270.45	1296.81	1.490	7.87	66.15	7.87	66.15	1.412	99.000
30.000	Left	1	30.000	40.000	3202.96	0.00	3202.96	1446.09	1395.08	1.259	10.50	88.20	10.50	88.20	1.177	99.000
30.000	Right	1	30.000	40.000	3202.96	0.00	3202.96	1446.09	1395.08	1.259	10.50	88.20	10.50	88.20	1.177	99.000
37.125	Left	1	37.125	49.500	3202.96	0.00	3202.96	1498.15	1361.17	1.252	12.99	109.15	12.99	109.15	1.151	99.000
37.125	Right	1	37.125	49.500	3202.96	0.00	3202.96	1498.15	1361.17	1.252	12.99	109.15	12.99	109.15	1.151	99.000
37.500	Left	1	37.500	50.000	3202.96	0.00	3202.96	1497.79	1357.21	1.256	13.12	110.25	13.12	110.25	1.153	99.000
37.500	Right	1	37.500	50.000	3202.96	0.00	3202.96	1497.79	1357.21	1.256	13.12	110.25	13.12	110.25	1.153	99.000
45.000	Left	1	45.000	60.000	3202.96	0.00	3202.96	1408.70	1195.36	1.501	15.75	132.30	15.75	132.30	1.340	99.000
45.000	Right	1	45.000	60.000	3202.96	0.00	3202.96	1408.70	1195.36	1.501	15.75	132.30	15.75	132.30	1.340	99.000
52.250	Left	1	52.250	69.667	3202.96	0.00	3202.96	1204.78	908.51	2.199	18.28	153.61	18.28	153.61	1.864	99.000
52.250	Right	1	52.250	69.667	3202.96	-54.32	3202.96	1204.78	908.51	2.199	18.28	153.61	18.28	153.61	1.864	99.000
52.500	Left	1	52.500	70.000	3198.98	-56.97	3198.98	1195.68	896.81	2.234	18.37	154.35	18.37	154.35	1.888	99.000
52.500	Right	1	52.500	70.000	3198.98	-56.97	3198.98	1195.68	896.81	2.234	18.37	154.35	18.37	154.35	1.888	99.000
55.000	Left	1	55.000	73.333	3159.20	-87.73	3159.20	1083.36	762.75	2.722	19.25	161.70	19.25	161.70	2.225	99.000
55.000	Right	1	55.000	73.333	3170.05	-1105.95	3170.05	1083.36	762.75	2.736	19.25	161.70	19.25	161.70	2.236	99.000
60.000	Left	1	60.000	80.000	3091.18	-1172.08	3091.18	858.73	494.63	4.513	21.00	176.40	21.00	176.40	3.296	99.000
60.000	Right	1	60.000	80.000	3091.18	-1172.08	3091.18	858.73	494.63	4.513	21.00	176.40	21.00	176.40	3.296	99.000
67.500	Left	1	67.500	90.000	2631.54	-1259.15	-1259.15	397.86	-497.68	3.329	23.62	198.45	23.62	198.45	99.000	5.617
67.500	Right	1	67.500	90.000	2944.68	-1261.62	-1261.62	397.86	-497.68	3.334	23.62	198.45	23.62	198.45	99.000	5.625
72.250	Left	1	72.250	96.333	2265.85	-1267.13	-1267.13	41.88	-861.37	1.520	25.28	212.41	25.28	212.41	99.000	2.056
72.250	Right	1	72.250	96.333	2265.85	-1267.13	-1267.13	41.88	-861.37	1.520	25.28	212.41	25.28	212.41	99.000	2.056
74.250	Left	1	74.250	99.000	826.20	-1133.46	-1133.46	-122.88	-1035.74	0.976	25.98	218.29	25.98	218.29	99.000	1.268
75.000	Left	1	75.000	100.000	459.84	-1092.55	-1092.55	-131.22	-1102.49	0.872	26.24	220.50	26.24	220.50	99.000	1.120
75.000	Right	2	0.000	0.000	459.84	-1092.55	-1092.55	-131.22	-1102.49	0.872	26.24	220.50	26.24	220.50	99.000	1.120

Figure 9 - Moment redistribution for HL-93 (US) - Truck + Lane at Design Inventory rating level and Strength I limit state

MomentRedistributionReport.st - Notepad																
File Edit Form	nat View	Help														
Moment redis	tributi	on for T	ype 3 - Leg	al Truck at	Legal Rout	tine rating	level and S	trengthI lim	it state.							
D. 6																
Before momer	nt redis	tributio	on:	2.005	0 37 435 6											
Minimum po	sitive	flexure	rating fact	or = 3.005	@ 37.125 ft	c .										
Minimum ne	gative	+lexure	rating fact	or = 2.450	@ 75.000 +1	t										
After moment	: redist	ributior	14													
Minimum po	ositive	flexure	rating fact	or = 2.864	@ 37.125 ft	t										
Minimum ne	gative	flexure	rating fact	or = 2.864	@ 75.000 fi	t										
								Max	Appli	ed						
			L	ocation	Percent		Re	distribution	Redistrib	ution						
Location				in Span	in Span [DL+AdjLL	LL+I	Percentage	Percent	age						
(ft)	Support	Side	Span	(ft)	(%)	(kip-ft) ((kip-ft)	(%)	(%)							
0.000	1	Right	1	0.000	0.000	0.00	0.00	0.000	_	0.000						
75.000	2	Left	1	75.000	100.000	-131.22	-392.37	20.000	1	2.930						
75.000	2	Right	2	0.000	0.000	-131.22	-392.37	20.000	1	2.930						
135.000	3	Left	2	60.000	100.000	-80.87	-282.98	20.000	2	0.000						
135.000	3	Right	3	0.000	0.000	-80.87	-282.98	20.000	2	0.000						
195.000	4	Left	3	60.000	100.000	0.00	0.00	0.000		0.000						
					Positive	Negative	Initial				Max	Max	Applied	Applied		
			Location	Percent	Flexure	Flexure	Flexure	Initial	Initial	Initial	Delta	Delta	Delta	Delta		
Location			in Span	in Span	Capacity	Capacity	Capacity	DL+AdiLL	LL+I	Controlling	DL+AdiLL	LL+I	DL+AdiLL	LL+I	Positive	Negative
(ft)	Side	Span	(ft)	(%)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	Flexure RF	(kip-ft)	(kip-ft)	(kip-ft)	(kip-ft)	Flexure RF	Flexure RF
6 666	Right	1	6 666	ัด ดดด	596.96	-87.16	5 596 96	0.00	0 00	99 000	0 00	0 00	0 00	0 00	99 000	99 000
1 750	Left	1	1 750	2 333	1931 1	3 -231 92	2 1931 13	138 81	70 29	25 499	0.61	1 83	0.40	1 18	25 071	99 000
1 750	Right	1	1 750	2 333	1931 1	-231.9	2 1931 13	138 81	70 29	25 499	0.61	1.83	0.40	1 18	25 071	99 000
7 500	Left	1	7 500	10 000	2764 96	5 _234 39	3 2764 96	547 41	266 82	8 311	2 62	7 85	1 70	5 07	8 150	99 000
7 500	Right	1	7 500	10.000	2764.90	5 -234.30	3 2764.90	547.41	266.82	8 311	2.02	7.85	1 70	5.07	8 150	99.000
15 000	Loft	1	15 000	20.000	3095 59	5 1/2 6	7 3005 55	970.89	445.96	4 764	5 25	15 69	3 39	10.15	4 651	99,000
15.000	Right	1	15 000	20.000	3005 51	5 142.0	7 3005 55	970.09	445.96	4.764	5.25	15.69	3 30	10.15	4.001	99.000
21 750	Lof+	1	21 750	20.000	3202.0	C EA 31	2000.00	1246.07	527 01	2 644	7 61	22.76	4.92	14 71	2 529	99.000
21.750	Diele	1	21.750	29.000	3202.90		2 3202.90	1240.07	537.01	3.044	7.01	22.70	4.92	14.71	3.550	00.000
21.750	L a C+	-	21.750	29.000	3202.90	· 0.00	3202.90	1240.07	557.01	3.044	7.01	22.70	4.92	14.71	3.336	99.000
22.500	Dieht	-	22.500	30.000	3202.90	5 0.00	3202.90	1270.45	544.51	3.550	7.07	25.54	5.09	15.22	5.445	99.000
22.500	Right	1	22.500	50.000	3202.90	o 0.00	3 3202.90	12/0.45	544.51	5.550	/.0/	25.54	5.09	15.22	5.445	99.000
30.000	Lett	1	30.000	40.000	3202.90	5 0.00	3 3202.90	1446.09	563.90	5.009	10.50	51.59	6.79	20.29	2.896	99.000
30.000	Kight	1	30.000	40.000	3202.90	5 0.00	3202.96	1446.09	583.90	3.009	10.50	51.59	6.79	20.29	2.896	99.000
37.125	Lett	1	37.125	49.500	3202.90	5 0.00	3202.96	1498.15	567.28	3.005	12.99	38.84	8.40	25.11	2.864	99.000
37.125	Right	1	37.125	49.500	3202.90	5 0.00	3202.96	1498.15	567.28	3.005	12.99	38.84	8.40	25.11	2.864	99.000
37.500	Lett	1	37.500	50.000	3202.90	5 0.00	3202.96	1497.79	565.46	3.016	13.12	39.24	8.48	25.37	2.8/2	99.000
37.500	Kight	1	37.500	50.000	3202.90	5 0.00	3202.96	1497.79	565.46	3.016	13.12	39.24	8.48	25.37	2.8/2	99.000
45.000	Lett	1	45.000	60.000	3202.90	5 0.00	3202.96	1408.70	497.47	3.607	15.75	47.08	10.18	30.44	3.379	99.000
45.000	Kight	1	45.000	60.000	3202.90	5 0.00	3202.96	1408.70	497.47	3.607	15.75	47.08	10.18	30.44	3.3/9	99.000
52.250	Le+t	1	52.250	69.667	3202.90	5 0.00	3202.96	1204.78	383.16	5.215	18.28	54.67	11.82	35.34	4.746	99.000
52.250	Right	1	52.250	69.667	3202.96	5 -54.3	2 3202.96	1204.78	383.16	5.215	18.28	54.67	11.82	35.34	4.746	99.000
52.500	Le+t	1	52.500	70.000	3198.98	5 - 56.9	/ 3198.98	1195.68	378.52	5.292	18.37	54.93	11.88	35.51	4.810	99.000
52.500	Right	1	52.500	70.000	3198.98	8 -56.97	7 3198.98	1195.68	378.52	5.292	18.37	54.93	11.88	35.51	4.810	99.000
55.000	Left	1	55.000	73.333	3159.20	-87.7	3 3159.20	1083.36	326.97	6.349	19.25	57.55	12.44	37.20	5.666	99.000
55.000	Right	1	. 55.000	73.333	3170.0	5 -1105.9	5 3170.05	1083.36	326.97	6.382	19.25	57.55	12.44	37.20	5.696	99.000
60.000	Left	1	60.000	80.000	3091.18	8 -1172.08	3 3091.18	858.73	223.88	9.972	21.00	62.78	13.57	40.59	8.390	99.000
60.000	Right	1	60.000	80.000	3091.18	8 -1172.08	3 3091.18	858.73	223.88	9.972	21.00	62.78	13.57	40.59	8.390	99.000
67.500	Left	1	67.500	90.000	2631.54	4 -1259.15	5 2631.54	397.86	54.95	40.646	23.62	70.63	15.27	45.66	22.049	99.000
67.500	Right	1	67.500	90.000	2944.68	B -1261.62	2 2944.68	397.86	54.95	46.344	23.62	70.63	15.27	45.66	25.161	99.000
72.250	Left	1	72.250	96.333	2265.85	5 -1267.13	3 -1267.13	41.88	-303.03	4.320	25.28	75.60	16.34	48.87	99.000	5.215
72.250	Right	1	72.250	96.333	2265.85	5 -1267.13	-1267.13	41.88	-303.03	4.320	25.28	75.60	16.34	48.87	99.000	5.215
74.250	Left	1	74.250	99.000	826.20	-1133.40	5 -1133.46	-122.88	-368.13	2.745	25.98	77.69	16.80	50.22	99.000	3.232
75.000	Left	1	75.000	100.000	459.84	4 -1092.55	-1092.55	-131.22	-392.37	2.450	26.24	78.47	16.97	50.73	99.000	2.864
75.000	Right	2	0.000	0.000	459.84	4 -1092.55	5 -1092.55	-131.22	-392.37	2.450	26.24	78.47	16.97	50.73	99.000	2.864

Figure 10 - Moment redistribution for Type 3 - Legal Truck at Legal Routine rating level and Strength I limit state